Join our email list to stay up to date on the latest Amyloidosis news.

A groundbreaking study in ATTR amyloidosis, using novel CRISPR/Cas9, has dosed the first patient in the UK. This revolutionary technology brings us a step closer to the dream of curing inherited diseases like hereditary amyloidosis.

Intellia Therapeutics, Inc. announced earlier this month that the first patient has been dosed in their groundbreaking, phase 1 trial in the UK. The product, NTLA-2001, uses a novel technology developed by by Emmanuelle Charpentier and Jennifer Doudna, PhD, for which they were awarded the Nobel Prize in Chemistry last month.

CRISPR (pronounced “crisper”), which stands for Clustered Regularly Interspaced Short Palindromic Repeats, and Cas9 (CRISPR-associated 9 protein) can make permanent, precisely targeted changes in a patient’s genome, thereby repairing the disease-causing genetic mutation.

Your genome refers to your entire genetic makeup, or all your genes that contain the DNA coding for proteins. A mutation in a gene can cause disease, like TTR amyloidosis. CRISPR/Cas9 is designed to work in vivo, or inside the body, as a single course of treatment to address the underlying genetic mutation. The technology is described as “molecular scissors” that can delete a specific disease-causing mutation at an exact location in the DNA, and thereby modify the gene function. The technology is delivered intravenously (into a vein) and within a particle that is specifically designed to reach the liver. Once in the liver, CRISPR/Cas9 “deletes” the pathogenic mutation, and if this occurs in enough cells, it is expected to stop disease progression and symptoms.

Bacteria has a natural immune response that is similar to the mechanism of CRISPR/Cas9, where it cuts and destroys the DNA of a foreign invader, like a virus. Intellia is applying this process to human DNA, and hope that this is “the beginning of the end of genetic diseases.”
A one-time treatment would be an enormous breakthrough over current therapies which typically require lifelong administration. This could also be applied across countless genetic diseases, such as blood disorders and Huntington’s Disease. Clinical trials for the treatment, currently named NTLA-2001, are underway in the UK with the first patient dosed just earlier this month. This early phase 1 trial aims to demonstrate the drug’s safety and to identify an ideal dosage. Click here to read the full press release.

Watch this video from Intellia to learn more about this exciting technology:

Intellia’s President and CEO John Leonard, M.D. stated “Once we’ve assessed safety and established an optimal dose, we intend to rapidly initiate trials for the clinical manifestations of ATTR. NTLA-2001 may halt and reverse ATTR progression by producing a deeper, permanent TTR protein reduction for all patients – regardless of disease type – than the chronically administered treatments currently available.”
ARC created the My Amyloidosis Pathfinder (MAP) tool to help amyloidosis patients find treatment centers, enhanced care, and clinical trials that they may be eligible for. Create or update your profile today, and we will notify you when new clinical trials match with your demographics and presentation: https://www.myamyloidosispathfinder.org/

This is an exciting time for the amyloidosis community, as well as the entire rare genetic disease population. ARC remains committed to keeping you informed with the latest news, clinical trial information, and research. Be sure you are subscribed to our newsletter to receive communications.

*

*

*

*